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Abstract

This paper presents an improved symplectic precise integration method (PIM) to increase the accuracy and keep the

stability of the computation of the rotating rigid–flexible coupled system. Firstly, the generalized Hamilton’s principle is

used to establish a coupled model for the rotating system, which is discretized and transferred into Hamiltonian systems

subsequently. Secondly, a suitable symplectic geometric algorithm is proposed to keep the computational stability of the

rotating rigid–flexible coupled system. Thirdly, the idea of PIM is introduced into the symplectic geometric algorithm to

establish a symplectic PIM, which combines the advantages of the accuracy of the PIM and the stability of the symplectic

geometric algorithm. In some sense, the results obtained by this method are analytical solutions in computer for a long

span of time, so the time-step can be enlarged to speed up the computation. Finally, three numerical examples show the

stability of computation, the accuracy of solving stiff equations and the capability of solving nonlinear equations,

respectively. All these examples prove the symplectic PIM is a promising method for the rotating rigid–flexible coupled

systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that most numerical methods, such as the traditional Runge–Kutta method (RKM), are
not ideal for Hamiltonian systems, because they are not generic in the set of all dynamic systems [1]. In other
words, they are not structurally stable against non-Hamiltonian perturbations. The numerical approximation
by an ordinary numerical method can introduce non-Hamiltonian perturbations, which means that a
Hamiltonian system will become a dissipative system when integrated by an ordinary numerical method.
These two kinds of systems have completely different long-term behaviors in computational stability.
Symplectic geometric algorithms (SGA) can preserve the features of Hamiltonian systems by arranging each
step of the integration with the canonical or symplectic transformation.

Recently, the numerical discretization algorithms that can inherit the symplectic structure of Hamiltonian
system have been studied. SGA for Hamiltonian system is firstly presented by Kang and Ruth [1,2] who have
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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shown that these methods can preserve Hamiltonian with high accuracy over long periods of time. It has been
proven that symplectic methods with fixed step-size possess better long-term stability properties than non-
symplectic methods or symplectic methods with variable step-size [3]. More comparisons between symplectic
and non-symplectic algorithms can be found in Ref. [4].

Symplectic inner product is area measure which distinguishes symplectic geometry from Euclidean
geometry, so it is impossible to define length by symplectic structure. Symplectic geometry can properly show
the symplectic structure of Hamiltonian system, and avoid the artificially external disturbance. The solutions
of Hamiltonian system are one-parameter transformations, which can inherit the symplectic structure and
keep energy conservation.

So far, most applications of symplectic schemes are related to many-particle systems which are modeled as
point particles. Such problems arise in astronomy and molecular dynamics [5,6]. Some results are available for
the conservative rigid-body systems [7,8] and the cantilever beam and plate [9]. However, there are much few
researches devoted to the rotating rigid–flexible coupled systems. In this paper, it is the first time that SGA is
applied to deal with the rotating rigid–flexible coupled system.

Precise integration method (PIM) is usually utilized to solve the time-step integration for time-invariant
systems. For such a problem, PIM can give highly accurate results which approach the full computer precision
[10]. However, the traditional SGA cannot meet the requirements of accuracy. By introducing the idea of PIM
into SGA, an improved symplectic precise integration method (SPIM) is presented to increase the accuracy of
the numerical results given by SGA. SPIM is used to solve a linearly high–low frequencies system to show the
accuracy, and to solve a nonlinear coupled system to indicate this method can deal with the nonlinear
differential equations successfully.

The objectives of this study are that a suitable SGA is firstly applied to solve a rigid–flexible coupled system
and an improved method named SPIM is established to increase the accuracy and the efficiency of SGA. This
paper is organized as follows: In Section 1, the generalized Hamilton’s principle is used to establish the
coupled model. In Section 2, the model is transformed into Hamiltonian system to get the canonical equations.
A suitable SGA is established for solving the coupled model in Section 3, and the idea of PIM is introduced
into the SGA to get an improved SPIM to solve the coupled model in the next section. In the last section, three
numerical simulations will be given to show the long-term stability properties of the symplectic algorithm, the
high accuracy of solving stiffness equations and the powerful capability of solving nonlinear systems of SPIM,
respectively.
2. A rotating flexible structure modeled by Hamilton’s principle

The structure studied is shown in Fig. 1, which mainly includes a hub, a flexible tapered beam and a tip
mass. The hub connects the ground with an angle spring with rigidity k1. And the flexible beam connects the
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Fig. 1. A rotating rigid–flexible coupled system (a) Deformations of the rotating rigid–flexible coupled system; (b) Parameters of the

tapered beam.
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hub with an angle spring with rigidity k2. The section parameters in Fig. 1(b) are b1, h1, b2 and h2. The hub’s
radius is R, and the tip mass is mt.

The generalized Hamilton’s principle can be written as follows:Z t2

t1

ðdT � dV þ dW Þdt ¼ 0, (1)

where dT is the variation of kinetic energy, dV the variation of potential energy, dW the virtual work of
external force.

In Fig. 1(a), point P0 is moved to point P2, and in coordination O0�X0Y0 can be expressed as

~Rp2 ¼ O0P2

���!
¼ O0O
��!
þU1U2 OP1

��!
þ P1P2
��!� �

¼ ~RþU1U2

xþ uðx; tÞ

vðx; tÞ

" #
, (2)

where ~R ¼ O0O
��!

is the position of the origin O of coordination O�XY in coordination O0�X0Y0. OP1

��!
, written

as [x,0]T, is the position of point P1 in coordination O�XY before deforming. P1P2
��!

is the deformation vector
[u(x, t), v(x, t)]T, can be written in details as follows:

P1P2
��!

¼
uðx; tÞ

vðx; tÞ

" #
¼

w1ðx; tÞ þ wcðx; tÞ

w2ðx; tÞ

" #
¼

w1ðx; tÞ þ 1
2

R x

0

qw2ðx; tÞ
qx

� �2

dx

w2ðx; tÞ

2
64

3
75, (3)

where w1(x, t) is the axial extension quantity, and w2(x, t) the transverse displacement. wc(x, t) is the axial
shrinking quantity caused by the transverse displacement w2(x, t). U1 is the transformation matrix of the hub
correspond to the coordination O0�X0Y0, and U2 is the coordination O�XY correspond to the hub. These
matrixes can be expressed as

U2 ¼
cos f2 � sin f2

sin f2 cos f2

" #
and U1 ¼

cosðf1Þ � sinðf1Þ

sinðf1Þ cosðf1Þ

" #
. (4)

The total kinetic energy is

T ¼
1

2
JA
_f
2

1 þ
1

2

Z L

0

rAðxÞ
_~R
T

P2

_~RP2
dx, (5)

where JA is the rotary inertia of the hub, and the area A(x) is function of x, and L and r are the length and the
density of the flexible beam.

The total potential energy is

V ¼
1

2
k1f

2
1 þ

1

2
k2f

2
2 þ

1

2

Z L

0

EAðxÞ u0ðx; tÞð Þ
2
dxþ

1

2

Z L

0

EIðxÞ v00ðx; tÞð Þ
2
dxþ

1

2

Z L

0

f ðxÞv0
2
dx, (6)

where f(x) is centrifugal force, the moment of inertia I(x) is function of x, and E is the Young’s modulus of the
beam.

The beam is divided into n elements with the same length, which is shown in Fig. 2.
The point in the ith element can be expressed in the reference coordination O�XY as follows:

x ¼ Li þ x̄, (7)
Y
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Fig. 2. The finite element model of the tapered beam.
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where

Li ¼
ði � 1Þ

n
L.

Since the axial extensions, the transverse and the slope displacements of the beam can be regarded as
generalized variables, the deformations u and v in the ith element are expressed herein as the interpolation of
the two nodes coordinates of this element using an element shape function, given by

u ¼ Nuq
i; v ¼ Nvq

i; ut ¼ Nt
uq

t; vt ¼ Nt
vq

t, (8)

where Nu and u are the axial displacement shape function and the axial extension, respectively. Nv and v are
the transverse displacement shape function and the transverse displacement, respectively. Superscript t denotes
the tip mass. These shape functions can be seen in Ref. [11].

Displacement vectors qi and qt can be written as

qi ¼ ui; vi; yi; uiþ1; viþ1; yiþ1
� �

, (9)

qt ¼ un; vn; yn; unþ1; vnþ1; ynþ1
� �

, (10)

where yi is the slope angle displacement, respectively. And we can get

u0 ¼ N0uq
i; _u ¼ Nu _q

i, (11)

v0 ¼ N0vq
i; v00 ¼ N00vq

i; _v ¼ Nv _q
i. (12)

Then we can get the deformation vector in coordination O�XY as follows:

r2 ¼
uðLi þ x̄; tÞ

vðLi þ x̄; tÞ

" #
¼

Nuq
i

Nvq
i

" #
. (13)

Lagrangian can be gained by Eqs. (7)–(13). By the use of finite element method, the discretized Lagrangian
can be written as

C ¼ T � V ¼
1

2
JA
_f
2

1 þ
1

2

Z L

0

rAðxÞ ððRþ x̄þ uÞ_yþ _vÞ2 þ ðv_y� _uÞ2
�	
dx̄

þ
1

2
mt ððRþ Lþ utÞ

_yþ _vtÞ
2
þ ðvt

_y� _utÞ
2
�	 _~R

T

t
_~Rt

�
1

2
k1f

2
1 �

1

2
k2f

2
2 �

1

2

Z L

0

EAðx̄Þu0
2
þ EIðx̄Þv00

2
þ f ðx̄Þv0

2
� �

dx̄. ð14Þ

Then we can get the dynamic equation of the vibration of the flexible beam according to the local float
coordination by virtue of the generalized Hamilton’s principle

Mmm 0

0 Mff

" #
€q
€U


 �
þ

Cmm Cmf

Cfm Cff

" #
_q
_U


 �
þ

Kmm Kmf

Kfm Kff

" #
q

U


 �
¼

Fm

Ff

" #
, (15)

where U ¼ [f1,f2]
T. It can be noted there are coupled terms between the transverse displacements, the axial

extensions and the rigid rotations. Since the rotating of the structure, there are additional damp terms and
stiffness terms in Eq. (15). Considering the effect of the non-uniform section, the area A(x) must be placed in
the integral expression, and cannot deal with it as a constant. Though the tapered beam is more difficult than
the uniform beam, it is closer to the real structure.
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3. Canonical equation for Hamiltonian vibration systems

The generalized displacement vector is defined as

y ¼
q

U


 �
. (16)

The generalized momentum is defined as

pðtÞ ¼
qLðy; _y; tÞ

q_y
¼MðtÞ_y. (17)

By Legendre transformation, Hamiltonian can be gained

Hðp; y; tÞ ¼ pTðtÞ_yðtÞ � Lðy; _y; tÞ ¼ Tðp; y; tÞ þ V ðy; tÞ ¼ 1
2
pTðtÞM�1ðy; tÞpðtÞ þ V ðy; tÞ. (18)

The canonical equations can be gained

_y ¼
qH

qp
¼ Hp; _p ¼ �

qH

qy
¼ Hy, (19)

qL

qt
¼ �

qH

qt
, (20)

where the generalized displacement vector y ¼ [q1(t) q2(t)yqn(t) f1(t) f2(t)]
T, the generalized momentum

vector p ¼ [p1(t) p2(t)ypn(t) pn+1(t) pn+2(t)]
T, and

Hy ¼
qH

qq1

qH

qq2

. . .
qH

qqn

qH

qf1

qH

qf2


 �T
; Hp ¼

qH

qp1

qH

qp2

. . .
qH

qpn

qH

qpf1

qH

qpf2

" #T

more about the Hamiltonian system can be seen in Ref. [12].
Considering the mass matrix as the function of the generalized displacements y, we can get

My ¼
qM

q1

qM

q2

. . .
qM

qn

qM

f1

qM

f2


 �
. (21)

Then

qM
q1

Hp

qM
q2

Hp � � �
qM
qn

Hp

qM
f1

Hp

qM
f2

Hp


 �
¼My I�Hp

	 �
¼
def

A, (22)

where IAR(n+2)� (n+2) is an identity matrix, � denotes Kronecker inner product. Then the canonical form can
be transformed into

_y ¼ Hp ¼M�1p; _p ¼ �Hy ¼
1

2
ATHp �

qV

qy
. (23)

4. Symplectic Runge–Kutta method for vibration systems

To discover the mathematic geometric characteristic of Hamiltonian canonical equations, Eq. (4) needs
writing in matrix form. By introducing the states vector z ¼ [y1, y2,y,yn+2, p1, p2,y,pn+2], Eq. (4) can be
expressed as follows:

_z ¼ J2nHz ¼ f ðzÞ, (24)
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where

J2ðnþ2Þ ¼
0 �Inþ2

Inþ2 0

" #

is an identity symplectic matrix, and In+2 is an identity matrix, and more about it can be found in Ref. [7].
There are two main ways to establish SGA for Hamiltonian systems, which are generating functions method

and directly symplectic Runge–Kutta method (SPKM). An sth-order SPKM is designed in detail as follows:

zkþ1 ¼ zk þ h
Xs

i¼1

bif ðYiÞ, (25)

Yi ¼ zk þ h
Xs

j¼1

aijf ðYjÞ ðipipsÞ, (26)

where h ¼ tk+1�tk(kX0).
Let X ¼ [mij] be a real s� s matrix given by

X ¼ BAþ A0B� bb0, (27)

where A ¼ (aij), b ¼ [bi], and define B ¼ diag[bi]. For i, j ¼ 1,y,s, the matrix X comes up frequently in the
study of Runge–Kutta schemes and nonlinear stability [12,13], and moreover Lasagni, Sanz–Serna and Suris
showed that

Theorem 1. If X ¼ 0, then the corresponding implicit RKM is symplectic.

In this paper, the 2nd-order accuracy form is adopted to generate the symplectic Runge–Kutta algorithm:

A ¼

1

4
0

1

2

1

4

2
664

3
775; b ¼

1

2
1

2

2
664
3
775, (28)

zkþ1 ¼ zk þ
h

2
f ðY1Þ þ f ðY2Þð Þ, (29)

Y1

Y2

" #
¼

zk þ
h

2
f ðY1Þ

zk þ
h

2
f ðY1Þ þ

h

4
f ðY2Þ

2
664

3
775. (30)

The above algorithm is a time-centered scheme.

5. Symplectic precise integration method

PIM used to solve the time-step integration for the time-invariant systems, which gives highly precise
numerical results approaching the full computer precision [10], so it is suitable for solving stiffness equations.
But the traditional PIM is effective for linear systems. In this paper, the idea of PIM is introduced into SGA to
establish SPIM which inherits properties of SGA and PIM.

How to calculate the exponential matrix exp(Ax) plays an important role in dynamic simulations. There are
many ways to get its numerical value, such as Padé approximants, Taylor expansion, which are the initial idea
of PIM. In this paper, the idea of PIM is introduced into the SGA to establish SPIM, and it will be proven that
the accuracy and the efficiency of the new algorithm is better than that of the traditional SGA and the
traditional RKM by two numerical examples.

Discussions on time-invariant systems or linear systems can be found in Ref. [10], and the time-variant
systems or nonlinear systems have been studied by the author [14]. But all these studies are devoted to
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non-symplectic algorithms. So it is important and necessary to discuss how to establish SPIM and what
advantages it has.

The nonlinearly coupled equations can be written as

J2ðnþ2ÞHz ¼ H0zþH1ðzÞ, (31)

where H0 is a constant matrix, H1(z) is a time-variant matrix or related to the states vector. H1(z) can be seen
as the external force vector, then Eq. (24) can be written as

_z ¼ H0zþH1ðzÞ. (32)

In time span (tk, tk+1), matrix H1(z) can be treated as

H1ðzÞ ¼ r0 þ r1ðt� tkÞ. (33)

The solution of equation _z ¼ H0z can be written as

z ¼ expðH0 � tÞ � z0. (35)

Supposed that z ¼ zk at time tk,

expðH � tÞ ¼ expðH � t=mÞ
� �m

, (36)

where m is an arbitrary integer. It is suggested to let m ¼ 2N, such as N ¼ 20, m ¼ 1,048,576. Since t is a short
time, Dt ¼ t/m is a shorter time. And we can get

expðH � tÞ ¼ expðH � DtÞ½ �
m
¼ expðH � DtÞ½ �

2N

¼ expðH � DtÞ½ �
2ðN�1Þ
� expðH � DtÞ½ �

2ðN�1Þ

� Iþ Ta½ �2
ðN�1Þ

� Iþ Ta½ �2
ðN�1Þ

¼ Iþ Ta½ �2
ðN�2Þ

� Iþ Ta½ �2
ðN�2Þ

� �
� Iþ Ta½ �2

ðN�2Þ

� Iþ Ta½ �2
ðN�2Þ

� �
, ð37Þ

where

Ta ¼ HDtþ
HDtð Þ

2

2
þ

HDtð Þ
3

3!
þ

HDtð Þ
4

4!
.

Eq. (37) can be get by the following code for (i ¼ 1;1o ¼ N;i++) {Ta ¼ 2Ta+Ta�Ta}.
When the computation is over, the transfer function can be gained as

WðtÞ ¼ Iþ Ta. (38)

The traditional PIM is not suitable for solving the Hamiltonian problems, which is just a non-symplectic
geometric algorithm with higher accuracy, so it is not a perfect scheme for Hamiltonian system.

The most important problem of PIM applied in Hamiltonian systems is how to calculate transformation
matrix exp(H � t) and preserve the symplectic structure of Hamiltonian systems. Herein, the Padé approach is
adopted, so exp(H � t) can be expressed as

expðH � tÞ �
nlmðH � tÞ
dlmðH � tÞ

¼ WlmðH � tÞ, (39)

where

nlmðH � tÞ ¼
Xm

k¼0

ðl þm� kÞ!m!

ðl þmÞ!k!ðm� kÞ!
ðH � tÞk; dlmðH � tÞ ¼

Xm

k¼0

ðl þm� kÞ!m!

ðl þmÞ!k!ðm� kÞ!
ð�H � tÞk.

Theorem 2. If H is an infinitesimal symplectic operator, and 9t9 is small enough, then Wlm(H � t) is symplectic

matrix. If and only if l ¼ m, Wll(x) is a Padé diagonal approach.
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In order to illuminate SPIM conveniently, we select l ¼ 2, m ¼ 2, then the following can be gained:

znþ1 ¼ zn þ
tH
2

zn þ znþ1ð Þ þ
t2H2

12
zn � znþ1ð Þ (40)

and the transformation function can be expressed as follows:

znþ1 ¼ W22ðH � tÞzn, (41)

where

W22ðH � tÞ ¼
Iþ

H � t
2
þ
ðH � tÞ2

12

I�
H � t
2
þ
ðH � tÞ2

12

.

This method achieves 4th-order accuracy:

expðH � tÞ ¼ expðH � t=mÞ
� �m

¼ WðH � t=mÞm

�

Iþ
H � t=m

2
þ
ðH � t=mÞ2

12

I �
H � t=m

2
þ
ðH � t=mÞ2

12

2
664

3
775
2N

¼
ðIþ TaÞ

2ðN�1Þ
ðIþ TaÞ

2ðN�1Þ

Iþ Tbð Þ
2ðN�1Þ
ðIþ TbÞ

2ðN�1Þ
, ð42Þ

where

Ta ¼
Ht=m

2
þ
ðHt=mÞ2

12
; Tb ¼ �

Ht=m

2
þ
ðHt=mÞ2

12
.

If Ta are arbitrary, then

ðIþ TaÞ � ðIþ TaÞ ¼ Iþ 2Ta þ Ta � Ta, (43)

where matrixes Ta are very small. In the computation, one of the most important points is that only the
additional matrix Ta of Eq. (43) should be kept in the memory rather than the matrix T ¼ (In+Ta+Ta�Ta).
Because 2Ta and Ta�Ta are extremely small (fine scale). If they are added to the identity matrix In (coarse
scale), they will become appended parts, and their precision will be seriously dropped in the round-off
operation in computer operation, in fact Ta and Ta�Ta are incremental parts. Eq. (39) can be realized by the
following code for (i ¼ 1;1o ¼ N;i++) {Ta ¼ 2Ta+Ta�Ta; Tb ¼ 2Tb+Tb�Tb;}.

So Eq. (39) can be written as

WðH � tÞ ¼
Iþ Ta

Iþ Tb

. (44)

If the linear interpolation approximation is used in the interval Tk�Tk+1, the solution of the nonlinear
system can be written as

zkþ1 ¼ W zk þH�1 r0 þH�1r1
	 �� �

�H�1 r0 þH�1r1 þ r1t
� �

. (45)

However, the linear interpolation is a rough approximation, and there are lots of different approximation
methods. The nonlinear part H(z) can be approximated by the following functions:
(1)
 Explicit method, such as linear interpolation, polynomials, trigonometric functions, and the product of
these functions, etc. The linear interpolation approximation can be expressed as follows:

r0 ¼ H1ðzk; tkÞ; r1 ¼ H01ðzk; tkÞ. (46)
(2)
 Implicit method, such as predictor correcting method. r1 can be calculated by the following two steps:
(1) predicting, ~zkþ1 ¼ Hðzk; tkÞ; (2) correcting, zkþ1 ¼ ~Hðzk; ~zkþ1; tk; tkþ1Þ.
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Then r1 can be written as

r1 ¼
Hðzkþ1; tkþ1Þ �Hðzk; tkÞ

tkþ1 � tk

. (47)

Remark 1. Eq. (47) can be integrated analytically in computer.

6. Numerical examples

In this section, three examples are adopted to show advantages of SGA and SPIM in different sides, such as
the long-term stability of symplectic algorithm, the high accuracy of solving stiff equations, and the capability
of solving nonlinear systems of SPIM, respectively. Structures of these examples can be abstracted from the
structure shown in Fig. 1.

6.1. Overall rotational cantilever beam—the stability of computation

Supposed the rigid radius is R ¼ 0, and angle springs are k1 ¼ 0, k2 ¼+N, and the tip mass is
mt ¼ 0.085 kg. Then we can get a coupled structure of hub and tapered beam with tip mass which is usually
studied in multibody field. Parameters of the hub and tapered beam with tip mass structure are listed as
follows: The length is L ¼ 8m; the density is r ¼ 2.7667� 103 kg/m3; the Young’s modulus is
E ¼ 6.8952� 1010N/m2; and the section parameters are b1 ¼ 0.04596m, h1 ¼ 0.00248m, b2 ¼ 0.02673m,
h2 ¼ 0.00144m, respectively. The area A(x) and the inertia moment I(x) can be calculated by parameters b1,
h1, b2 and h2 (Fig. 3).

Since the set of differential equations are very stiff, it is very strict with time-step in solving this equation.
Two time-steps involved in this example are 0.0001 and 0.0005, respectively. And the initial states vector are
z0 ¼ [0,0.1,0.5,0,0.2,1,0,0,0,0,0,0,0,0]. In this paper, only axial vibration is analyzed and shown in Figs. 4 and
5. And the calculated results of total energy are plotted in Figs. 6–9.

In all these results, methods adopted are the 2nd-order implicit SGA and the 4th-order RKM, respectively.
The results in Figs. 4–7 are calculated with time-step 0.0001.

The result in Fig. 4 is calculated by the 2nd-order implicit symplectic RKM which is a kind of SGA, and the
result in Fig. 5 is calculated by the traditional RKM. From Figs. 4 and 5, it can be found the difference in
amplitudes of states of the two methods. The amplitude in Fig. 4 keeps constant, however, that in Fig. 5
decreases gradually. All these indicate there is energy dissipation in the traditional RKM, but SGA is an
energy conservation method. In other words, SGA is a structure-persevered method, which can keep the
stability of the results in long periods of time.

The total energies calculated by SGA and RKM are plotted in Figs. 6 and 7, respectively. From Fig. 6, it
can be observed that the total energy waves in a certain amplitude, and does not decrease with time. But the
energy given by RKM departs from the original energy gradually.

From above, we can observe that SGA is better than RKM in long-time simulation and SGA can keep the
conservation of the total mechanical energy, but RKM cannot. It can be inferred that the energy calculated by
�1
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Fig. 3. A cantilever beam with rotating base.
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RKM will continue deviating from the original energy. When the simulation time is long enough, the states
maybe converge to zero.

Figs. 8 and 9 show the results of SGA and RKM with time-step 0.0005, respectively. It can be noted from
these results that SGA can keep conservation all the same, but the traditional RKM cannot get the real results
in a long span of time. By comparing Fig. 9 with Fig. 8, it can be concluded that SGA is subjected to less
influence of the step-size than the traditional RKM.

The dynamic model has been established in the framework of Hamiltonian, and SGA has been applied
firstly into such a rotating rigid–flexible coupled system. On view of the long periods of time, SGA can
maintain the stability of the numerical simulation, and can conserve the total mechanical energy, however,
RKM does not.

6.2. High– low frequencies mixed system—the accuracy of solving stiff equations

In order to validate the accuracy of SPIM, a set of stiff differential equations are adopted to be solved by
SPIM, PIM and RKM, respectively. Hamiltonian of this system is

U ¼ 1
2
m1 _x

2
1 þ

1
2
m2 _x

2
2 þ

1
2
m3 _x

2
3 þ

1
2
k1x2

1 þ
1
2
k2x

2
2 þ

1
2
k3x

2
3. (48)

Then we can get the canonical equation
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where position vector q ¼ [x1, x2, x3]
T, and momentum vector p ¼ ½m1 _x1;m2 _x2;m3 _x3�
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Supposed that m1 ¼ 0.1, m2 ¼ 10, m3 ¼ 1000, k1 ¼ 100, k2 ¼ 10, k3 ¼ 1, then we can gain the analytical
solution
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The results of state x1 plotted in Fig. 10 are calculated by SPIM, PIM, RKM, and analytical solution with
step size 0.05, respectively. That the result calculated by RKM departs far from the analytical solution has
been appeared in Fig. 10. The result calculated by SGA can capture the analytical solution, although there is
some error. The result calculated by SPIM can capture accurately the analytical solution, and cannot be
observed any difference between the results from SPIM and analytical solution. The errors between the result
of SPIM and the analytical solution is displayed in Fig. 11, from which it can be observed that the max error is
only 6.1� 10�15. From these comparisons, it is concluded that SPIM is a very precise method and its accuracy
is far higher than the other two methods.

When the time-step is finished, the results of state x1 are showed in Fig. 12. From this figure, it can be
observed that the results calculated by the four methods are close so much as to superpose entirely. After the
errors between three numerical results and analytical solution are studied, big difference between SPIM and
the other two numerical method will be found. All these errors are plotted in Figs. 13–15, from which SPIM is
proved that it is much better than the other two methods. In the first 2 s, the largest error of SPIM is
3.4� 10�15, but that of PIM is 5.4� 10�4, and that of RKM is 3.2� 10�3. Comparing the results calculated by
SPIM with 0.01 and 0.05, we can find SPIM subjects little infection of time-step.

An SPIM has considered the effect of accumulated error, so this algorithm can get the high-accuracy results
with large time-step. Simulations will be speeded up by enlarging time-step.
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6.3. Compound pendulum—the ability of solving nonlinear equations

In order to display the ability of solving nonlinear equations, the compound pendulum system is adopted
and modeled as a nonlinear system. Parameters of the compound pendulum are listed as follows: the mass of
pendulum is M ¼ 1 kg, and the length of pendulum is L ¼ 1m, and the mass of particle is m ¼ 0.1 kg, and the
stiffness of spring is k ¼ 100N/m, and g ¼ 9.81914m/s2 is the gravity at latitude 401 north. The initial states
are x0 ¼ 0.1m, y0 ¼ p/6, px(0) ¼ 0 and py(0) ¼ 0. The structure is shown in Fig. 16.

The total kinetic energy is

T ¼ 1
2
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þ 1

2
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The total potential energy is
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The generalized displacements and generalized momentums are
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Then the canonical equations of the system can be written as
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and
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then we can get equations, whose form is like as Eq. (32):
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The results plotted in Figs. 17 and 18 are calculated by RKM with time-step 0.0001 and SPIM with time-
step 0.01. From these figures, it can be observed that the two kinds of method get close results with different
time-steps which are time-step 0.0001 for RKM and time-step 0.01 for SPIM. But the calculation time of
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Fig. 17. State x calculated by RKM with time-step 0.0001 and SPIM with time-step 0.01.
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RKM is 753.375 s, and that of SPIM is only 0.079 s. When the time-step of RKM is also 0.01, its accuracy will
fall, and the calculated time is still 0.656 s. The calculation time is the average of ten times’ calculation.

When SPIM takes time-step 0.01, in order to meet the same accuracy, RKM has to take time-step 0.0001.
The time-step of SPIM is 100 times of that of RKM, and the calculation time of SPIM is 0.010486% of
that of RKM. From these data, it can be proved that the computation efficiency of SPIM is higher than that
of RKM.

When the same time-step 0.01 is adopted for SPIM and RKM, the magnitudes of calculation time are 0.079
and 0.656 s, respectively. SPIM is not only higher than RKM in efficiency, but also far more accurate than
RKM. It is promising that SPIM is used in simulation of control to solve the real-time problem.
7. Conclusions

This paper investigates a suitable SGA and presents an improved SPIM for the rotating rigid–flexible
coupled systems. SPIM has been adopted to analyze different kinds of engineering structures to show the
advantages of the stability, the accuracy and the efficiency. Some significant conclusions have been gained as
follows:
(1)
 The coupled model was established by the generalized Hamilton’s principle and discretized by the finite
element method. And the canonical form of the coupled structure has been gained by canonical
transformations. Most structures can be abstracted from this model, and which can be adopted to analyze
the highly flexible structures.
(2)
 A suitable SGA has been formulated to solve rotating rigid–flexible coupled systems. And it has been
proven that SGA cannot only solve this coupled system, but has higher stability than the traditional
RKM. It is the first time to apply the SGA to solving such a coupled model.
(3)
 SPIM, which integrates not only the computational stability which is the characteristic of the SGA, but
also the accuracy of PIM, has been established by introducing the idea of PIM into SGA. The results
calculated by SPIM can ensure the stability and the accuracy at the same time. So we can enlarge the time-
step to speed up the computation.
(4)
 It has been proven from these simulations SPIM can be used to solve the nonlinear systems successfully.
Meanwhile, it can be used to speed up the computation by enlarging time-step.
(5)
 Three different kinds of examples were adopted to prove SPIM cannot only solve the nonlinear and stiff
equations, but improve the computational efficiency. It is a promising method to deal with the real-time
problems in control field, or to speed up the calculations in computer.
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